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Abstract 

A tessellation with eightfold rotational symmetry was 
obtained by a self-similar subdivision of unit cells into 
rhombi and squares. 

Early algebraic work to generate a two-dimensional quasi- 
lattice like the Penrose tessellation (Penrose, 1974) was 
carded out by de Bruijn (1981) and Mackay (1982). Since 
the discovery of a quasi-crystal of an A1-Mn alloy (Schecht- 
man, Blech, Gratias & Cahn, 1984), several model structures 
of the quasi-lattice and its diffraction pattern have been 
studied by many authors (Hiraga, Hirabayashi, Inoue & 
Masumoto, 1985; Kimura, Hashimoto, Suzuki, Nagayama, 
Ino & Takeuchi, 1985; Levine & Steinhardt, 1984, etc.). 
There are two methods of obtaining a quasi-lattice; one is 
a projection of cubic cells in a higher-dimensional space 
to a lower one (Kramer & Neri, 1984; Duneau & Katz, 
1985), and the other is a self-similar subdivision of unit 
cells constituting the tessellation (Mackay, 1982; Ogawa, 
1985) 

We obtained a tessellation with eightfold rotational sym- 
metry by a self-similar subdividing operation of two kinds 
of cells, a rhombus and a square. Each unit cell is derived 
by dividing a regular octagon, which is uniquely divided 
into 16 rhombi and eight squares with eightfold symmetry 
at the center. In this subdividing operation the rhombus is 
divided into four squares and six rhombi, and the square 
into six squares and eight rhombi respectively (Fig. 1). The 
first-generation pattern of the square has a rhombic 
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Fig. 1. First-generation pattern derived from division of a regular 
octagon. 
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assembly with eightfold symmetry in its center and that of 
the acute rhombus includes a regular sub-octagon which 
consists of two squares and four rhombi, as shown by the 
shaded area of  Fig. 1, having mirror symmetry. Therefore 
eight different tessellations could be derived using the two 
kinds of subdivided unit cells obtained by rotating the 
sub-octagon about the center. The tessellation after n self- 
similar subdividing operations is called the nth-generation 
pattern. 

The ratio of the number of squares to rhombi for the nth 
generation with n tending to infinity is obtained by solving 
a recurrence formula. Let Sn be the number of squares and 
R, be the number of rhombi in the nth generation. Then 
the recurrence formula written in matrix form is 

Xn = AXn_~ = A nX o. ( 1 ) 

Here X, is a column vector given by 

Xn-- Rn 

with So = 1 and Ro = 1, and A is a matrix 

A = [  a'' a'2] (3) 
[. a21 a22/ 

with al~ = 6, a12 = 8, a2t = 4, a22 = 6. After a simple calcula- 
tion we obtain An: 

An= 

(4) 

The ratios of the number of nth-generation squares to 
rhombi are s. in a square, r. in a rhombus, and t. in a 
pattern of both added together, where 

r , (n) /  r~(n) r , (n) l  ,.,(n) 
Sn = ~II I~12 , rn  = ~21 I~22 , 

t .  = (a~"? + a<2~)) / (a]~ ) + a~2~)). (5) 

If one substitutes the relevant matrix elements of (4) into 
(5), and lets n approach infinity, then the ratios s., rn and 
t. converge to ~/2/2. This irrational number proves that the 
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Fig. 2. (a) Octagonal tessellation in rhombic cell. (b) Diffraction 

pattern of lattice points about the center of Fig. 2(a). 

octagonal tessellation pattern is non-periodic, as in the case 
of pentagonal tessellation (Mackay, 1981). The ratio of 
similarity from nth to (n + 1)th generation for this tessella- 
tion is 1/(2+x/2). 

As far as we know the eightfold symmetry diffraction 
pattern of a non-periodic structure has not yet been repor- 
ted. The diffraction pattern (Fig. 2b) of the tessellation 
shown in Fig. 2(a) was calculated by a FFT algorithm 
assuming that point-like atoms of 1423 are located at lattice 
points about the center of the rhombic cell. All the coordi- 
nates of lattice points in the nth-generation pattern can be 
computed from those of the zeroth-generation pattern by 
applying the self-similar subdividing operation recursively. 

In Fig. 2(b) we can also see sharp Bragg-like peaks with 
eightfold symmetry as expected, which might prove that 
the tessellation is a two-dimensional quasi-lattice. 
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Abstract 

A method is described to determine the molecular envelope 
from an isomorphous replacement phased electron density 
map using the reciprocal-space equivalent of B. C. Wang's 
algorithm [Wang (1985). In Methods in Enzymology, Vol. 
115: Diffraction Methods for Biological Macromolecules, 
edited by H. Wyckoff, C. H. W. Hirs & S. N. Timasheff. 
New York: Academic Press.]. In the case of chloram- 
phenicol acetyl transferase the computation time was 
reduced from 35 h (using the real-space algorithm) to 
40 min. 

A suite of programs designed to improve the quality of 
protein electron density maps has recently been developed 
and distributed by B. C. Wang and colleagues (Wang, 1985). 
The basis of their method is to use the electron density map 
to determine a molecular envelope and then to set the 
electron density in the solvent region to a constant value 

(solvent flattening) and apply a positivity constraint to the 
electron density in the protein region. The modified electron 
density map is Fourier transformed, and the resulting 
phases combined with the original single isomorphous 
replacement (or multiple isomorphous replacement) phase 
information. The combined phases are then used to calcu- 
late a new electron density map, and the whole procedure 
is repeated iteratlvely until there is no further improvement 
in the quality of the electron density. 

The solvent flattening part of this procedure has been 
used successfully in the structure determination of human 
alpha-1 proteinase inhibitor (Loebermann, Tokuoka, 
Deisenhofer & Huber, 1984), the photosynthetic reaction 
centre (Deisenhofer, Epp, Miki, Huber & Michel, 1984) 
and a light-harvesting biliprotein (Schirmer, Bode, Huber, 
Sidler & Zuber, 1985), all at 3/~, resolution, and similar 
results have been obtained by Wang and colleagues in the 
structure determination of cytochrome c5 at 2.5 A resolu- 
tion (Carter, Melis, O'Donnell, Burgess, Furey, Wang & 
Stout, 1985) as well as a number of structures at lower 
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